Metaprogramming and symbolic execution

for detecting runtime errors in Erlang programs

Emanuele De Angelis!, Fabio Fioravanti!, Adrian Palacios?,
Alberto Pettorossi® and Maurizio Proietti*

LUniversity of Chieti-Pescara, Italy
2Technical University of Valencia, Spain
3Universita di Roma 'Tor Vergata’, Italy

4CNR - IASI of Rome, ltaly

CILC 2018
Bolzano, 21 settembre 2018

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs

The Erlang language

Erlang is a dynamically typed functional language supporting

@ concurrency (based on asynchronous message-passing) and
@ hot code loading

These features make it appropiate for distributed, fault-tolerant
applications (Facebook, WhatsApp)

+ Dynamically typed languages allow rapid development
— Many errors are not detected until

@ the program is run on a particular input

@ a particular interleaving of processes is performed

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 2 /14

Some tools mitigate these problems

o Dialyzer: Dlscrepancy AnalLYZer for ERlang
(included in the Erlang/OTP development environment)

@ PropEr: PROPerty-based testing tool for ERlang
@ CutER: Concolic Unit Testing tool for ERlang

Our proposal:
Bounded verifier based on Constraint Logic Programming (CLP)

Erlang programs automatically translated into CLP
+

CLP interpreter to run them using symbolic inputs

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 3/14

Erlang subset

We consider a first-order subset of Erlang and sequential programs

A module is a set of function definitions

fun (Xi,...,X,) => expr end

The function body expr includes
e literals (atoms, integers, float numbers)
@ variables, list constructors, tuples
@ match (=), case-of and try-catch expressions
@ function applications

e calls to built-in functions (BIFs)

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 4 /14

Example program

-module (sum_list).

-export ([sum/1]). This code
@ compiles without warnings
sum(L) -> . .
@ crashes when the input is
case L of -
not a list (of numbers)

O -> o;
[HIT] -> H + sum(T)

end.

Our tool is able to
@ list all potential runtime errors
@ provide information about input types that cause them

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 5/ 14

Bounded Verification for Erlang programs using CLP

‘ Erlang }—-{ Core Erlang }—b cLp

The translation from Erlang to Core Erlang simplifies the program
@ pattern matching in case-of expressions only
@ explicit catch-all clauses in case-of expressions

@ function applications with variables and literals only

The CLP encoding is automatically obtained from Core Erlang

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 6 /14

Erlang-to-CLP translation: An example

fundef(lit(atom,’sum_list’), var('sum’,1),
fun([var('@c0’)],
case(var('@c0’),

—module (sum_list). clause([lit(list,nil)], lit(atom, true’) ,

-export ([sum/1]1). lit(int,0)),
clause([cons(var('H"),var('T"))], lit(atom,’true’) ,
sum(L) —> let([var('@cl')],apply(var('main’,1),[var('T")]),
case L of call(lit(atom,’erlang’) lit(atom,'+"),
0 - o; [var("H"),var("@cl)]))),
[HIT] -> H + sum(T) clause([var(’@c2")], lit(atom, true’) ,
end. primop(lit(atom, 'match_fail’),
[tuple([lit(atom,’case_clause’),var('@c2")])]))
]
)

)
).

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 7/ 14

CLP interpreter

The operational semantics is given in terms of a transition relation
tr (Bound, cf (IEnv, IExp) ,cf (FEnv,FExp))

between configurations of the form
cf (Environment, Expression)
which defines how to get

o the final configuration cf(FEnv,FExp) from
@ the initial configuration cf (IEnv,IExp) in

@ Bound computation steps

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 8 /14

Transition rules: An example

tr (Bound, cf (IEnv,IExp) ,cf (FEnv,FExp)) :-

Emanuele De Angelis

IExp = apply(FName/Arity,IExps),
lookup_error_flag(IEnv,false),
Bound>0,

Bound1l is Bound-1,

fun(FName/Arity,FPars,FBody),

tr (Boundl,cf (IEnv,tuple (IExps)),
cf (EEnv, tuple (EExps))),

bind (FPars,EExps,AEnv),
lookup_error_flag(EEnv,F1),
update_error_flag(AEnv,F1,BEnv),

tr (Boundl, cf (BEnv,FBody) ,cf (CEnv,FExp)),

lookup_error_flag(CEnv,F2),
update_error_flag(EEnv,F2,FEnv) .

Metaprogramming and symbolic execution for Erlang programs 9 /14

Error detection with run/4

The interpreter provides the predicate
run(FName/Arity,Bound, In,Out)

whose execution evaluates the application of the function FName
of arity Arity to the input arguments In in at most Bound steps.

Out is the result of the function application.

If an error is found, then Out is bound to a term of the form
error (Reason)

where Reason represents the error type:
@ match_fail: evaluation of a match expression failed

@ badarith: bad argument in an arithmetic expression

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 10 / 14

Error detection with run/4

Bounded verification of Erlang programs can be performed by
executing a query of the form

?7- run(FName/Arity,Bound,In,error(Reason)).

@ No answer: the program is error-free up to Bound

@ 1+ answer(s): error(s) detected, each answer provides

o the error type (the Reason)
o the input that causes the error
@ some constraints on the computation that raises the error

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 11 /14

Error detection with run/4: An example

By executing
?- run(sum/1,20,In,error(Reason)).
we obtain some answers (error detected)
In = [cons(1it(Type,_V),lit(1list,nil))],
Reason = badarith,

dif (Type,int), dif(Type,float)

In = [L],
Reason = match_fail,
dif (L,cons(_Head, Tail)), dif(L,lit(list,nil))

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 12 / 14

Error detection with run/4: An example

A generator for the program input(s), such as:
int_1ist(N,L)
can be used to generate lists of integers L of length N
L = cons(lit(int,N1),cons(1it(int,N2),...))
By using L to constrain the input of sum/1 in the query
?- int_1ist(L,100), run(sum/1,100,L,error(Reason)).

we get no answer, meaning that sum/1 is error-free up-to 100

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 13 / 14

Conclusions & Future work

Bounded verifier for sequential Erlang programs:
@ Translator from Core Erlang to CLP
@ CLP Interpreter

Extend the CLP interpreter to
@ support higher-order functions

@ handle concurrent programs
Specialize the CLP interpreter to

@ improve the efficiency of the verification process

@ apply to the specialized interpreter other tools for analysis and
verification (e.g., constraint-based analyzers or SMT solvers)

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 14 / 14

Conclusions & Future work

Bounded verifier for sequential Erlang programs:
@ Translator from Core Erlang to CLP
@ CLP Interpreter

Extend the CLP interpreter to
@ support higher-order functions

@ handle concurrent programs

Specialize the CLP interpreter to
@ improve the efficiency of the verification process

@ apply to the specialized interpreter other tools for analysis and
verification (e.g., constraint-based analyzers or SMT solvers)

Thanks for your attention!

Emanuele De Angelis Metaprogramming and symbolic execution for Erlang programs 14 / 14

	Introduction
	Verification for Erlang programs

