Software Verification and Synthesis using

Constraints and Program Transformation

Emanuele De Angelis
University 'G. d'Annunzio’ of Chieti—Pescara

Convegno ltaliano di Logica Computazionale 2015
Genova, 1 July, 2015

Verification framework
@ Sequential Programs (e.g., C programs)
@ Formal language: Constraint Logic Programming
@ Proof technique: Program Transformation
Implementation and Experimental Results

@ the VeriMAP tool

Synthesis framework
e Concurrent Programs (e.g., Peterson algorithm)
@ Formal language: Answer Set Programming

@ Synthesis technique: Answer Set Solvers

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Verification Conditions as CLP Programs

Given the program prog and the specification {@init} prog {—@error }

while(x<n) {
{x=0ANy=0An>1} x=x+1; {y>x}
}

Verification Conditions (VCs) can be encoded as a set of clauses P

incorrect :- X=0, Y=0, N > 1, while(X,Y,N). Initialization

while(X,Y,N) :-X <N, X1=X+1, YI=Y+2, while(X1,Y1,N). Loop body
while(X,Y,N) :-X>N, Y<X. Exit

VCs are satisfiable iff incorrect not in the least model M(P) of P

How to (automatically)
(A) generate the VCs for prog ?
(B) prove the satisfiability of the VCs ?

Software Verification and Synthesis using Constraints and Program Transformation

Emanuele De Angelis

The Transformation-based Verification Method

Transformation of Constraint Logic Programs (CLP) to:
@ generate the Verification Conditions (VCs)
@ prove the satisfiability of the VCs

Interpreter: Int Specification: {@init} prog {—@eror}

(2) Specialize Int w.r.t. prog <—————

(generate the VCs) (1) Encode

into CLP

Verification Conditions: VCs ‘L

(3) Propagate @init OF @error and Analyze
(prove the satisfiability of the VCs)

prog correct prog incorrect Verification method: (1);(2);(3)*

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Encoding partial correctness into CLP: the interpreter Int

Proof rules for safety (reachability of error configurations)

incorrect :- initial(X), phiInit(X), reach(X).
reach(X) :- tr(X,Y), reach(Y).
reach(X) :- final(X), phiError(X).

Operational semantics of the programming language

tr(cf(Labl,Cmdl),cf(Lab2,Cmd2)) :- --- J
e.g., operational semantics of conditionals
L: if (Expr) { tr(cf(ecmd(L,ite(Expr,L1,12)),S), cf(C,S)) :-
Li: ... beval (Expr,S), % expression is true
} at(L1,C). % next command
else tr(cf(ecmd(L,ite(Expr,L1,12)),S), cf(C,S)) :-
L2: ... beval (not (Expr),S), % expression is false
} at(L2,C). % next command

Theorem (Correctness of Encoding)

prog is correct iff incorrect & M(Int) (the least model of Int)

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Encoding program and specification into CLP

Given the program prog and the specification {@init} prog {—@error}

while(x<n) {
{X:oAy:O/\nzl}J x=x+1; {M
y=y+2;
}

CLP encoding of program prog

A set of at(label, command) facts.
while commands are replaced by

CLP encoding of @jnix and perror ite and goto.
phiInit(X,Y,N) :-X=0,Y=0,N>1. at(0,ite(less(x,n),1,h)).
phiError(X,Y):- Y<X. at(1,asgn(x, plus(x,1))).

(
(
at(2, asgn(y, plus(y, 2))).
at(3,goto(0)).
at(h,halt).

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Generating Verification Conditions

The specialization of Int w.r.t. prog removes all references to:
e tr (i.e., the operational semantics of the imperative language)

e at (i.e., the encoding of prog)

The Specialized Interpreter for prog (Verification Conditions)

incorrect :- X=0, Y=0, N> 1, while(X,Y,N).
while(X,Y,N) :-X<N,X1=X+1,Y1=Y+2, while(X1,Y1,N).
while(X,Y,N) :- X>N, Y<X.

New predicates correspond to a subset of the program points:

while(X,Y,N) :-reach(cf(cmd(0,ite(...)),
[[int (x),X], [int(y),Y], [int(n),N]1]1)).

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Rule-based Program Transformation

Rule-based program transformation

R @ transformation rules:
P; R e {Unfolding, Clause Removal, Definition, Folding }
lR @ the transformation rules preserve the least model:

Ps Theorem (Rules are semantics preserving)

lR incorrect € M(P) iff incorrect € M(TransfP)

@ the rules must be guided by a strategy.
R

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

The Unfold/Fold Transformation Strategy

Transform(P)

TransfP = ();
Defs = {incorrect :-initial(X), phiInit(X), reach(X)};
while 3g € Defs do

%execute a symbolic evaluation step (resolution)

Cls = Unfold(q);

% remove unsatisfiable and subsumed clauses

Cls = ClauseRemoval(Cls);

% introduce new predicates (e.g., a loop invariant)

Defs = (Defs — {q}) U Define(Cls);

%match a predicate definition
TransfP = TransfP U Fold(Cls, Defs);
od

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Propagation of

The transformation of the VCs P

VCs for prog (Specialized interpreter Int)

incorrect :- X=0, Y=0, N > 1, while(X,Y,N).
while(X,Y,N) :-X<N,X1=X+1,Y1=Y+2, while(X1,Y1,N).
while(X,Y,N) :- X>N, Y<X.

by propagating the constraint X=0,Y=0,N > 1,
modifies the structure of P and derives the new VCs TransfP

Transformed VCs for prog

incorrect :- X=0, Y=0, N>1 newl(X,Y,N).

newl(X,Y,N) :- X=0, Y=0, N>1, Xi=1,¥1=2, new2(X1,Y1,N).
new2(X,Y,N) :- X<N,X1=X+1, YI=Y+2, X1>1, Y1>2, new2(X1,Y1,N).
new2(X,Y,N) :- X>N, Y<X, Y>0,N>1.

The fact incorrect is not in TransfP, we cannot infer that prog is incorrect.
A constrained fact is in TransfP, we cannot infer that prog is correct.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Propagation of ©eror

Transformed VCs for prog (after the propagation of @jn;t)

incorrect :- X=0, Y=0, N>1, new1(X,Y,N).

newi(X,Y,N) :- X=0, Y=0, N>1, X1=1, Y1=2, new2(X1,Y1,N).
new2(X,Y,N) :- X<N,X1=X+1, YI=Y+2, X1>1, Y1>2, new2(X1,Y1,N).
new2(X,Y,N) :- X>N, Y<X, Y>0, N>1.

Reversed VCs

incorrect :- X>N, Y<X, Y>O0, N>1, new2(X,Y,N).

new2(X1,Y1,N) :- X=0, Y=0, N>1, X1=1, Y1=2, newi(X,Y,N).
new2(X1,Y1,N) :- X<N,X1=X+1, YI=Y+2, X1>1, Y1>2 new2(X,Y,N).
newl(X,Y,N) :- X=0, Y=0, N>1.

| A

v

by propagating @error, that is, the constraint X>N, Y<X, Y>0, N> 1.

Transformed VCs for prog (after the propagation of @error)

incorrect :- X>N, Y<X, Y>0, N>1, new3(X,Y,N).
new3(X1,Y1,N) :- X<N,X1=X+1, Y1=Y+2, X>Y,Y>0, new3(X,Y,N).

No facts: prog is correct.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Verification Framework

Program prog
Step (0) Translate Prog tSOO‘érfS € (written in L)

and ¢ into CLP Translator Specification ¢
(specified in M)

Initial CLP Program T

Interpreter Int

Step (1) Specialize Int w.r.t. T VCe;irflidci;:;cci)?ln €—— (Semantics of L)
(Removal of the Interpreter) Generator ¢ (Semantics of M)

Verification Conditions (VC's) V

Step (2) Transform verification Unfold/Fold
conditions w.r.t. ¢ Transformer

Transformed VC's S

unknown
Step (3) Check whether or Analyzer +
not ¢ holds in Q VC's S
true false

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

VeriMAP: A Tool for Verifying Programs through Transformations

http://map.uniroma2.it/VeriMAP/

Fully automatic software model checker for C programs.

@ CIL (C Intermediate Language) by Necula et al.

e MAP Transformation System by the MAP group
(IASI-CNR, ‘G. d'Annunzio’ and ‘Tor Vergata' Universities)

Iterated Verifier unknown
CIL Interpreter +
C Program ¢~ 4 g
* C to CLP Verification Unfold/Fold true/false
Property Conditions Transf Analyzer
——— = Translator ransformer
. ™ Generator

Proof Rules Z[F ﬁ

Transformation Strategies

Constraint Domain
™| Unfolding | Generalization | Constraint Replacement

Data Theor;
= o Operators Operators Solvers Rules

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Experimental Evaluation - Integer Programs

http://map.uniroma2.it/VeriMA

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013
Software Verification Competition.

VeriMAP ARMC HSF(C) TRACER

1 | correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 | incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 | errors 0 18 0 22
8 | timed-out problems 31 51 52 77
9 | total time 10717.34 15788.21 15770.33 23259.19
10 | average time 57.93 114.41 98.56 225.82

@ ARMC [Podelski, Rybalchenko PADL 2007]
@ HSF(C) [Grebenshchikov et al. TACAS 2012]
@ TRACER [Jaffar, Murali, Navas, Santosa CAV 2012]

Emanuele De Angelis

Software Verification and Synthesis using Constraints and Program Transformation

Synthesis of protocols for concurrent programs

Answer set Programming;:

Reduce the design of protocols to the computation of answer sets

logic program

= encoding of a problem
answer sets (model) = solutions of a problem

logic program P ——

ASP System

. {AS|AS = P}

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Specification: Behavioural Properties

Time dependant behavioural properties of Concurrent Programs:

o safety
@ liveness

Specified in a Temporal Logic, i.e., Computation Tree Logic (CTL):
@ path quantifiers: for all paths A, for some paths E
@ temporal operators: eventually F, globally G, next X,....

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Specification: Structural Properties

Process structure: encoded as a function f

either the id

id id id id
P > P - P P

1 id |

(Dijkstra’s semaphore)

W

W
W

or a generator of a cyclic group {id, f,...,f* 1} of order k
f f f f
Pl » P2 > > Pk—l » Pk

1 f |

(Peterson’s algorithm)

Software Verification and Synthesis using Constraints and Program Transformation

Emanuele De Angelis

A 2-process protocol

Given the specification

Behavioural property: AG = (x1=u A xy=1u) (mutual exclusion)
Structural property: 0_.0
1>< 1

(A) encode it as ASP Program P
false :- not ag(neg(and(local(pl,u),local(p2,u)))).
(B) compute the answer sets of P

(C) decode the protocols from the answer sets

x1:=t;xp:=t;y:=0

Py : true — if P> : true — if
X1=t Ay=0—=x1:=u; y:=0; Xo=uAy=1-=x:=t; y:=1,
| xi=tAy=0—x1:=w;y:=1;, || xo=tAy=1—x:=w; y:=0;
fi fi

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Complexity of the synthesis procedure

Theorem

For any number k>1 of processes, for any symmetric program
structure o over L and D, and for any CTL formula @, an answer
set of the logic program I, U T, can be computed in

(i) exponential time w.r.t. k,

(ii) linear time w.r.t. |p|, and

(iii) nondeterministic polynomial time w.r.t. |L| and w.r.t. |D|.

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Experimental results

Specification:
@ Mutual Exclusion (ME)
@ Starvation Freedom (SF)
@ Bounded Overtaking (BO)

@ Maximal Reactivity (MR)

Synthesized k-process concurrent programs:

| Program | Satisfied Properties | [ans(P)[| Time (sec) |
ME 10 0.011
mutex for 2 ME 10 0.012
processes ME, SF 2 0.032
ME, SF, BO 2 0.045
ME, SF, BO, MR 2 0.139
ME 9 0.036
mutex for 3 ME 14 0.036
processes ME, SF 6 3.487
ME, SF, BO 4 4.323

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

Conclusions

Verification Framework, which is parametric with respect to
@ the language of the programs to be verified, and
@ the logic of the property to be checked.
Instantiated to prove partial correctness of integer and array C programs

Implemented and available as a stand-alone system: the VeriMAP tool,
which is competitive with respect to others CLP-based software model
checkers.

Synthesis Framework, a fully declarative solution

@ reduces the design of a concurrent program
to the design of its formal specification
@ independent of the ASP solver

Emanuele De Angelis Software Verification and Synthesis using Constraints and Program Transformation

